星际物质

来自中文百科,文化平台
跳转至: 导航搜索

星际物质( Interstellar Matter ),银河系(和其他星系)内恒星之间的物质,包括星际气体、星际尘埃和各种各样的星际云,还可包括星际磁场和宇宙线。

麒麟座玫瑰星云.jpg

麒麟座玫瑰星云 (选自美国基特峰天文台KPNO)

星际物质(ISM)约占银河系可见物质质量的10%,高度集中在银道面,尤其在旋臂中。不同区域的星际物质密度可相差很大。星际气体和尘埃当聚集成质点数密度超过10~103个/厘米3时,就成为星际云,云间密度则低到0.1个/厘米3质点。平均密度为10−24克/厘米3,相当于平均数密度为1个/厘米3氢原子。星际物质的温度相差也很大,从几K到千万K。不同温度和密度的星际物质大体可用三相模型来描述。其中,冷中性介质为密度30个/厘米3原子,温度70K的中性氢气体,占总体积的3%~4%;温中性介质为密度0.3个/厘米3原子,温度6 000K的中性氢气体,占总体积的20%;热电离介质为密度0.001个/厘米3原子,温度1百万K的电离氢气体,占总体积的70%。这三种成分近似处于压强平衡,相互间可来回转换。

星际气体的化学组成可通过各种电磁波谱线的测量求出。结果表明,星际气体的元素的丰度与根据太阳、恒星、陨石得出的宇宙丰度相似,即氢约60%,氦约30%,其他元素很低。

星际尘埃是尺度约0.01微米到0.1微米的固态质点,分散在星际气体中,总质量约占星际物质总质量的1%。星际尘埃可能是由下列物质组成的:①水、氨、甲烷等的冰状物;②二氧化硅、硅酸镁、三氧化二铁等矿物;③石墨晶粒;④上述3种物质的混合物。

星际尘埃吸收和散射星光,使星光减弱,这种现象叫作星际消光。消光数值依赖于观测方向,朝银极方向较小,银心方向最大。星际消光随波长的减小而增长,蓝光比红光减弱得更多,使星光的颜色随之变红,这种现象叫作星际红化。射电和红外波段的星际消光同光学波段相比可忽略,因而是观测银心的最佳波段。星际尘埃还可引起星光的偏振,由这种星际偏振可测量星际磁场,其能量密度约为2×105电子伏/米3。

星际尘埃对于星际分子的形成和存在具有重要的作用。一方面尘埃能阻挡星光紫外辐射不使星际分子离解,另一方面固体尘埃作为催化剂能加速星际分子的形成。

星际物质的观测可在不同的电磁波段进行,如1904年在分光双星猎户座δ的可见光谱中发现了位移不按双星轨道运动而变化的钙离子吸收线,首次证实星际离子的存在。1930年观测到远方星光颜色变红,色指数变大(即星际红化),首次证实星际尘埃的存在。1951年通过观测银河系内中性氢21厘米谱线,证实星际氢原子的大量存在。1975年利用人造卫星紫外光谱仪观测100多颗恒星的星际消光与波长的关系,得知220纳米附近的吸收峰。1977年,观测星际X射线波段,发现OⅦ2.16纳米(0.57千电子伏)的谱线,确认存在着温度达105~107K的高温气体。

根据现代恒星演化理论,一般认为恒星早期是由星际物质聚集而成,而恒星又以各种爆发、抛射和流失的方式把物质送回星际空间。