催化

来自中文百科,文化平台
跳转至: 导航搜索

  催化汉语拼音:Cuihua;英语:Catalysis),是利用催化剂改变化学反应速度的一种工艺。能显著提高化学反应速率而不影响化学平衡的作用。许多化学工业要利用催化作用来获得需要的反应速度。

  催化是自然界中普遍存在的现象,几乎遍及化学反应的整个领域。70%的化学化工产品、90%的化工过程需要使用催化剂,各种生命活动也与催化作用有密切联系。

  催化也是一种化工单元过程,催化剂本身在反应中不会被消耗,但催化剂会改变反应速度,一催化剂亦可能参与复数的催化反应。正催化剂可加速反应;负催化剂或抑制剂则会与反应物反应进而降低化学反应。可提高催化剂活性的物质称为促进剂;降低催化剂活性者则称为催化毒。

  相较于未催化的反应,同温度的催化反应拥有较低的活化能。催化剂可以借由结合反应物达到极化的效果,如酸催化剂之于羰基化合物的合成;催化剂也可产生非自然的反应中间物,如以四氧化锇催化烯烃的双羟基化中产生的锇酸盐酯;催化剂亦可造成反应物的裂解,如制氢时产生的单原子氢。

  很多物质都可以做催化剂,在无机物反应中,通常利用酸、碱、金属或金属化合物作为催化剂,在有机物反应中多用有性的蛋白质分子——酶作为催化剂,生物体内许多化学反应都依赖酶来进行的。

概述

  早在公元前,中国已会用酒曲(生物酶催化剂)造酒。18世纪中叶出现的铅室法硫酸,用一氧化氮作催化剂,这是工业上采用催化剂的开始。催化这个词是1835年由J.J.贝采利乌斯提出来的。1902年W.奥斯特瓦尔德将催化作用定义为“加速化学反应而不影响化学平衡的作用”。

  1910年实现合成氨的大规模生产,是催化工艺发展史上的里程碑。20世纪以来,催化工艺得到迅速发展,如20年代用钴催化剂实现一氧化碳加氢合成液体燃料(费托合成)开辟了碳一化工的先河,1955年齐格勒–纳塔催化剂成功用于烯烃定向聚合,60~70年代催化裂化、催化重整,1975年以来的汽车尾气净化和其他环保催化剂等。催化早已成为化学工业、能源工业和改善环境与生态必不可少的化学工艺。

原理

  在催化反应过程中,至少必须有一种反应物分子与催化剂发生某种形式的化学作用而变得更容易进行化学反应(即化学上更加活泼),称为活化。由于催化剂的介入,化学反应的途径发生了改变,而新的反应途径需要的活化能较低,这就是催化剂得以提高化学反应速率的原因。

  在可逆反应中,催化剂是以同样的倍率对正向、逆向反应的速率产生影响的。所以催化剂不能改变化学反应的平衡常数,只能影响反应向平衡状态推进的速度。例如铂、钯催化剂可使苯加氢转变为环己烷,亦可使环己烷脱氢成苯。但到底是发生加氢还是脱氢反应主要取决于具体的反应条件。

分类

  催化作用可分为(热)化学催化和生物催化。化学催化以非生物的化学物质为催化剂,通常又可分为均相催化和多相催化。生物催化以酶为催化剂(见酶催化)。有时,一些非生物的化学物质可以起到类似于生物酶的催化作用,称为(化学)模拟酶催化剂。

均相催化

  催化剂与反应物同处一均匀物相(液相或气相)中的催化作用。液态酸碱催化剂、可溶性过渡金属化合物催化剂和碘、一氧化氮等气态分子催化剂的催化属于这一类。通常均相催化剂的活性中心单一,具有活性高、选择性好的特点,但也具有难以从反应体系中分离、回收和再生的缺点。

多相催化

  发生在两相的界面上。通常催化剂为多孔固体,反应物为液体或气体。多相催化反应包括7个步骤:

  1. 反应物的外扩散,即反应物向催化剂外表面扩散;
  2. 反应物的内扩散,即在催化剂外表面的反应物向催化剂孔内扩散;
  3. 反应物的化学吸附;
  4. 表面化学反应;
  5. 产物脱附;
  6. 产物内扩散;
  7. 产物外扩散。

  这一系列步骤中最慢的一步称为速率控制步骤。化学吸附是其中最重要的步骤,它使反应物分子得到活化,使化学反应的活化能降低。因此,多相催化反应,必须至少有一种反应物分子在催化剂表面上发生化学吸附。固体催化剂表面是不均匀的,表面上只有一部分原子(离子)或原子团(离子团簇)对反应物分子起活化作用,称为催化活性中心。由于多相催化作用发生在固体催化剂的表面,因此,固体催化剂的表面性质对催化作用有很大影响。催化剂的比表面积,表面上活化中心的数量和分布,表面孔隙度和孔径大小等对多相催化作用均有重要影响。多相催化工业上应用最多。

复相催化反应

  复相催化是一独立的化学反应。它兼有均相催化的温度和多相催化的速度。同时具有可控的方向性。对固液气均可进行催化且用量极少。在反应时,全方位的进行催化,致使反应速度加快数千倍。由于催化能力倍增,使其可从碳水化合物中移动氢氧,而这正是把工业和生物废弃物“一步法”转化为标准汽柴油的科学基础。列如:

    二氧化碳 + 废塑料轮胎 --> 汽柴油+可燃气+炭黑

既解决了空中环境堵塞,又将地面废弃物转化为能源;

    煤+地面农、林、牧、城市生活废弃物、城市工业废弃物 --> 汽柴油+可燃气+炭黑

既解决了地面的污染问题,地面生态通道的堵塞,和煤排出的二氧化碳问题,又将煤、地面废弃物转化为急需的汽、柴油基础油,它产生的可燃气体和天然气的低碳排放是一个水平:排出的可燃气体,碳排放量为16%,天然气的碳排放量12%。

  优化化石能源的产业结构。用先进的催化技术和仿生能源的工艺方法,将炼油工业转化为资源节约型的工业结构。

    石油 --> 汽柴油+可燃气+炭黑

  以高科技手段,打破垄断,形成资源节约型产业,把地下化石能源成本降下来。 相比于传统炼油,设备成本为(1/5) 生产成本为(1/2)且更多的产出来源于石油中的生物质

  复相催化具有广泛的用途。它可替代多相和均相催化。同时,它也会从本质上改变燃烧动力,因而对动能机械影响很大,像飞机,火车,轮船及其它大型运输工具。因为它可解决加速度和长距离巡航问题。另外,它可降低多种物质的临界点。这将极大的有利于核反应炉,超临界萃取,地下油砂的开采。

催化理论

  中间化合物理论 认为催化剂先与某一反应物作用,生成活性中间化合物,后者又进一步反应,转变为产物,同时催化剂复原。此理论的核心是:

  1. 催化剂直接参与化学反应;
  2. 催化反应速率与催化剂的浓度或催化剂用量成正比。

  活化过渡态理论 将一般化学反应的过渡态理论应用于解释催化作用,认为反应分子与催化剂接触后必须先形成一个活化过渡态(形成活化络合物),再转变为产物。表面活性中心与吸附的分子作用将导致反应物分子在催化剂表面发生变形,甚至发生解离形成活泼的表面活化络合物,从而可以降低反应的活化能,加速化学反应的进行。

  多位催化理论 认为催化活化中常有多个活性中心对反应分子发生影响。此理论1929年由苏联的A.A.巴兰金提出,又称为几何对应原理。如果催化剂表面活性中心的空间结构(分布和间距)与反应分子将发生变化的那部分结构呈几何对应关系,则被吸附的分子容易变形活化,即旧键较易松弛,新键较易形成。

  活性集团催化理论 认为活性中心是催化剂表面上具有特定配位不饱和状态的表面原子,它和邻近的与其配位的若干个原子组成了活性集团。活性集团概念对于认识催化剂表面活性中心的本质,建立催化活性中心的理论模型具有重要作用。

  半导体催化电子理论 把催化作用描述为反应分子与催化剂表面之间的一种电子传递过程,而担负此传递任务的是用作催化剂的半导体(过渡金属氧化物)导带中的电子或满带中的空穴。此理论的特点是把催化剂表面吸附的反应分子也看成是整个半导体的施主或受主,也就是把催化反应的两个方面:反应分子和催化剂(包括助催化剂)看成一个统一的整体,并且按照半导体的术语,把催化反应分成n型反应(其反应的控制步骤受电子加速的反应)和p型反应(其反应的控制步骤受空穴加速的反应)。N型半导体催化剂加速n型反应,P型半导体催化剂加速p型反应。