化学吸附

来自中文百科,文化平台
跳转至: 导航搜索

  化学吸附(chemical adsorption),由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。

  吸附特点 与物理吸附相比,化学吸附主要有以下特点:

  1. 吸附所涉及的力与化学键力相当,比范德华力强得多。
  2. 吸附热近似等于反应热。
  3. 吸附是单分子层的。因此可用朗缪尔等温式描述,有时也可用弗罗因德利希公式描述。
  4. 有选择性。
  5. 对温度和压力具有不可逆性。

  另外,化学吸附还常常需要活化能。确定一种吸附是否是化学吸附,主要根据吸附热和不可逆性。

  吸附机理 可分3种情况:①气体分子失去电子成为正离子,固体得到电子,结果是正离子被吸附在带负电的固体表面上。②固体失去电子而气体分子得到电子,结果是负离子被吸附在带正电的固体表面上。③气体与固体共有电子成共价键或配位键。例如气体在金属表面上的吸附就往往是由于气体分子的电子与金属原子的d电子形成共价键,或气体分子提供一对电子与金属原子成配位键而吸附的。

  在复相催化中的作用及其研究 在复相催化中,多数属于固体表面催化气相反应,它与固体表面吸附紧密相关。在这类催化反应中,至少有一种反应物是被固体表面化学吸附的,而且这种吸附是催化过程的关键步骤。在固体表面的吸附层中,气体分子的密度要比气相中高得多,但是催化剂加速反应一般并不是表面浓度增大的结果,而主要是因为被吸附分子、离子或基团具有高的反应活性。气体分子在固体表面化学吸附时可能引起离解、变形等,可以大大提高它们的反应活性。因此,化学吸附的研究对阐明催化机理是十分重要的。化学吸附与固体表面结构有关。表面结构化学吸附的研究中有许多新方法和新技术,例如场发射显微镜、场离子显微镜、低能电子衍射、红外光谱、核磁共振、电子能谱化学分析、同位素交换法等。其中场发射显微镜和场离子显微镜能直接观察不同晶面上的吸附以及表面上个别原子的位置,故为各种表面的晶格缺陷、吸附性质及机理的研究提供了最直接的证据。