大气折射

来自中文百科,文化平台
跳转至: 导航搜索

  大气折射汉语拼音:Dɑqi Zheshe;英语:Dtmospheric Refraction),电磁波在传播过程中通过不同介质的界面时传播方向的改变称为折射,天体射来的光线或射电波通过地球大气层受到大气的折射,这种现象和由此引起的折射量称为大气折射。

历史

  早在公元前2世纪前后,希腊的波西东尼乌斯就发现了大气折射现象,认识到大气折射影响大测量结果的准确性。公元2世纪希腊大天文学家托勒密在他的着作《光学》第五卷中进一步论述了大气折射问题。托勒密通过对恒星位置的反复观测,发现大气折射的作用,使得接近地平的星象位置有所升高。托勒密用光学折射的道理从理论上阐述了这一现象。16世纪,丹麦的大天文学家第谷也对大气折射现象有所研究,他测定了大气折射值。法国的天文学家G.D.卡西尼则于17世纪首先根据正弦定律建立了大气折射理论。其他一些着名的天文学家如英国的牛顿、布拉得雷、法国的拉普拉斯等人都对大气折射有所研究。19世纪20年代德国的天文学家贝塞尔建立了计算大气折射的对数公式,编制了一份相当精确的大气折射表。1870年俄国普尔科沃天文台编制了一份大气折射表,至今仍被广泛应用。

影响

  产生的影响包括:

  ①天体方向改变。地球大气层的密度上稀下密,天体发出的光线因大气折射的变化而逐渐弯曲,以致观测者所见天体的视天顶距比真天顶距小。这一现象又称蒙气差。其值随天体天顶距的增大而增大,在天顶时为零,接近地平时最大。

  ②光程延长。在激光测距工作中,大气折射使测量到的光行时间比真空中的实际时间延长。在射电干涉测量中对射电波也有类似的影响。

  ③色散效应。由于大气折射率与光的波长有关,不同光谱型的恒星有不同的大气折射,因而会在观测天顶距中引入与光谱型有关的误差。这一效应也能使星像发散成一个光带。

测量

  大气折射通常通过建立大气模型,即对大气物理性质随高度而改变的规律作某些假定,从而计算出大气折射量,加以改正。大气折射改正值还因温度、气压、湿度而变化。在实用上编成大气折射表,根据观测的天顶距和观测时记录的气温和气压可以从表中查出大气折射值。