恒星大气理论

来自中文百科,文化平台
跳转至: 导航搜索

恒星大气理论( theory of stellar atmospheres ),主要通过对恒星光谱的解释来研究恒星大气的结构、物理过程和化学组成的理论。天体物理中的重要组成部分。恒星上能被直接观测到的表面层称为恒星大气。太阳是一颗典型的恒星,而且是离地球最近从而可对其表面不同区域的光谱进行详细观测和分析的唯一恒星。因此常以太阳大气的研究作为恒星大气研究的范畴。对于非常遥远不能作区域分解观测的恒星,只能对可见半球积分辐射的光谱进行观测和研究。包括太阳在内的正常恒星辐射功率基本上集中在可见区和近红外波段。光谱的主要特征是在连续光谱的背景上叠置许多吸收谱线。对连续谱和吸收谱线的观测和理论分析可获得关于恒星大气的知识,不过各有不同的分析方法和适用范围。

连续光谱研究

太阳和恒星的连续光谱是由它们的低层大气——光球层产生的。为了从观测太阳连续谱获得光球的知识,必须先从理论上建立太阳连续谱辐射强度随波长的变化(又称为连续能谱分布),以及从日面中心至日面边缘的光谱变化与光球中各种物理参数随深度变化的关系。光球中能量是以辐射方式传输的。辐射从内部向外部传输过程中不断与光球物质相互作用,也就是经历了不断吸收与再输运,直至由光球表面自由地向外空辐射。研究这种物质对辐射的吸收和再发射过程,就可建立上述关系。为此通常假定:

①太阳和其他恒星为球对称,大气中各种物理参数仅为深度的函数。同时,它们的辐射是稳定的,不随时间变化。

②太阳和恒星光球处于局部热动平衡态。所谓局部热动平衡态就是光球内任一小体积元中可用单一温度来描述辐射场和物态。小体积之中粒子和光子的能态分布由该温度对应的麦克斯韦分布、萨哈方程和玻耳兹曼方程以及普朗克函数确定。但温度本身则是空间位置的函数,在球对称假定下仅是深度的函数。

上述假定下可推导出太阳和恒星大气中辐射通过既能吸收又能发射的物质时辐射强度变化所遵循的方程式,通常称为辐射转移方程,其形式为:

辐射转移方程.jpg

式中 θ为辐射方向对 恒星径向的偏离角, τ λ为波长 λ处的光学厚度,其微分定义为d τ λ=− κ λ ρd r,其中 ρ为 大气密度,d r为径向上的路程微元, κ λ为波长 λ处单位质量 大气的吸收系数。 I λ( τ λ, θ)就是在波长为 λ、光学厚度为 τ λ和对径向偏角为 θ的方向上的辐射强度。而:

源函数.jpg

称为 源函数,其中 j λ为单位质量 大气的发射率。可见源函数就是物质发射与吸收的比值。吸收系数 κ λ依赖 恒星 大气的吸收机制,而源函数 S λ既与 大气的吸收机制有关也与 大气的发射机制有关。因此它们都包含着 恒星 大气结构和物理过程的信息。

恒星大气的发射机制主要包括离子与电子复合、电子在离子的库仑力场中减速以及原子或离子因吸收光子或其他粒子碰撞而跃迁到高能级后再向低能级跃迁产生的辐射。恒星大气的吸收可分为真吸收和散射两种形式。真吸收是指原子吸收光子后不再发射出去的吸收,如因光致电离导致原子能级的束缚、自由跃迁和导致电子动能增大的自由–自由跃迁。散射则只涉及光子的方向或波长变化。光子波长不变而只改变光子方向的散射称为相干散射,如原子从某方向吸收光子而跃迁到高能级后重新跃迁到原先的低能级,并向各方向发射同一波长的光子,以及电子对光子的汤姆逊散射,均为相干散射;而涉及改变光子波长的散射,则称为非相干散射,如原子吸收光子跃迁到很高的能级后再逐级向下跃迁的级联散射就是非相干散射。但两种散射都将导致在入射方向上和一定波长处的辐射减弱,因此表现为吸收。

求解辐射传能方程,可得到从太阳或恒星表面向外的辐射强度表示式为:

恒星表面向外的辐射强度.jpg

只有知道源函数:

源函数.jpg

的具体形式和某些假定之后,才能具体计算出太阳和 恒星表面的辐射强度 I λ( θ)。实际上太阳表面任一点与日轮中心点在太阳球心的张角就是 θ。因此对某一确定的波长 λ I λ( θ)表示在此波长处太阳表面辐射强度从日轮中心向日轮边缘的变化。实测结果和 理论计算均表明,太阳辐射主要功率所在的可见光和近红外波段, I λ( θ)从日轮中心( θ=0)向日轮边缘( θ=90°)过渡时, λ I λ( θ)逐渐变小。在日轮中心附近减小不太明显,但到边缘附近 λ I λ( θ)迅速下降。故在可见光和近红外波段拍摄的太阳照片上可看到太阳边缘明显变暗,这一现象称为太阳的 临边昏暗。 理论分析得知,日轮中心附近的辐射主要来自光球低层,那里温度较高,辐射较强,显得较亮;而日轮边缘附近的辐射来自光球上层,该处温度较低,辐射较弱,显得较暗。因此太阳临边昏暗现象是光球温度随高度增大而下降的直接反映。另一方面,对于日轮上任一固定测点( θ确定), λ I λ( θ)表示该测点处辐射强度随波长的变化,就是连续光谱的能量分布。而 λ I λ( θ)对 θ的积分就表示整个日轮上所有点辐射总合成的平均能谱分布,相当于不可分辨的遥远 恒星的情况。因此,通过实测得到的太阳表面辐射中连续能谱分布及其临边昏暗规律,与通过某些假定和源函数 S λ的具体形式后求解辐射转移方程得到的 理论 λ I λ( θ)进行比较,可探求太阳 大气中各种物理参数如温度、压力、密度和电离度等随深度的变化,亦即建立太阳或 恒星的 大气模型。

吸收谱线研究

正常恒星的光谱是连续光谱上叠加许多暗黑的谱线,称吸收线。吸收线中的辐射强度并非为零,但比附近连续光谱的辐射弱,显得暗黑。不同吸收线有不同的强度和宽度。吸收线的中心波长对应于各种原子和离子的能级跃迁。恒星光谱中存在离散的吸收谱线的事实表明,恒星大气除了能对辐射作连续波长变化的吸收(称为连续吸收)外,还存在与能级跃迁相对应的特定波长的非连续吸收(称为选择吸收)。虽然吸收线所涉及的辐射能量在恒星大气的能量平衡中作用不大,然而观测和研究吸收线往往可比分析连续谱获得更为详尽的恒星大气知识。首先是研究吸收线可获知恒星大气的化学组成。而且,吸收线中辐射强度随波长的变化(称为谱线轮廓)和整条谱线的总强度(称为谱线等值宽度)中同样包含着恒星大气结构和物理过程的丰富信息。研究太阳表面不同区域光谱和恒星光谱中吸收线的轮廓和等值宽度,可推测吸收线形成区中温度、密度、压力、物质运动速度甚至磁场分布等更为详细的知识。不过与连续谱研究相比,谱线的研究在观测上和理论上遇到的困难更多。观测方面必须得到具有足够高色散和分辨率的光谱资料,因此对观测设备有较高的要求;而在理论上,为了准确地解释观测到的谱线轮廓,在多数场合必须考虑太阳或恒星大气中的不均匀性和动力学特性,有时还会涉及处理非局部热动平衡态问题。

吸收谱线的研究可分为谱线轮廓和生长曲线两种。在谱线轮廓方面,主要是建立适用于谱线波长范围的谱线辐射转移方程。为此除了考虑连续吸收系数外,还需要引入表明谱线存在的选择吸收系数,并确定谱线特有的源函数。确定选择吸收系数时,必须讨论复杂的谱线加宽机制问题。源函数则涉及恒星大气模型的应用。然后在某些基本假定下,求解谱线的辐射转移方程,得到理论的吸收谱线轮廓,再与实际观测到的谱线轮廓相比较,获取关于恒星大气结构和物理过程的知识。

在生长曲线的研究中,则是先从理论上推导出表征吸收线总强度的谱线等值宽度与产生该谱线的低能级原子数目的关系,称为理论生长曲线。另一方面,利用观测到的多重谱线得到一系列观测谱线等值宽度数据,构成观测生长曲线。把观测生长曲线与理论生长曲线进行比较,就可推测出恒星大气的化学组成、原子的激发温度、热运动速度、湍流速度和阻尼常数等。生长曲线方法的优点就是无须利用高色散的光谱观测资料,这一点尤其适用于暗弱恒星光谱的分析。

少数恒星光谱中除了吸收线外,还存在发射谱线,有些恒星甚至以发射线为其光谱的主要特征。发射线一般是由离星体较远处的稀薄气体,即星周气体产生的,而星周气体往往是由星体抛射出去的。发射谱线的强度和轮廓与星周气体的大小、形状、密度和运动方式等密切相关。因此对恒星发射线的观测和研究可获得关于星周气体结构和物理过程的知识。恒星发射线的研究也是恒星大气理论研究中的一个重要课题,其研究方法与吸收谱线的研究有些类似。