理论天体物理学

来自中文百科,文化平台
跳转至: 导航搜索

理论天体物理学( theoretical astrophysics ),利用理论物理方法研究天体的物理性质和过程的学科。1859年,G.R.基尔霍夫根据热力学规律解释太阳光谱的夫琅禾费线,断言在太阳上存在着某些和地球上一样的化学元素,这表明可利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质,是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步。20世纪20年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。30年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,促进了恒星内部结构理论迅速发展。并且,依据赫罗图的实测结果,确立了恒星演化的科学理论。1917年A.爱因斯坦用广义相对论分析宇宙的结构,创立了相对论宇宙学。1929年E.P.哈勃发现了河外星系的谱线红移与距离间的关系。以后,利用广义相对论的引力理论来分析有关河外天体的观测资料,探索大尺度上的物质结构和运动,以星系整体退行、宇宙微波背景辐射和元素合成为三大基石形成了现代宇宙学。在理论天体物理这一领域,可看到理论物理与天体物理更广泛更深入的结合和渗透,其中以非热辐射、相对论天体物理学、等离子体天体物理学、高能天体物理学等几个方面最为活跃。

内容

从理论物理学的分支与天体物理学问题的联系,可看出理论天体物理的概貌:①辐射理论。研究类星体、射电源、星系核等天体的辐射,以及X射线源、γ射线源和星际分子发射机制。②原子核理论。研究恒星的结构和演化,元素的起源和核合成,以及宇宙线问题。③引力理论。探讨致密星的结构和稳定性、黑洞问题,以及宇宙学的运动学和动力学。④等离子体理论。分析射电源的结构、超新星遗迹、电离氢区、脉冲星、行星磁层、行星际物质、星际物质和星系际物质等。⑤基本粒子理论。研究超新星爆发、天体中的中微子过程(见中微子天文学)、超密态物质的成分和物态等。⑥凝聚态理论。研究星际尘埃、致密星中的相变及其他固态过程。

方法

理论天体物理的基本方法是把地球上实验室范围中发现的规律应用于研究宇宙天体。这种方法不仅对于说明和解释已知的天体现象是有力的,还可预言某些尚未观测到的天体现象或天体。如在1932年发现中子之后不久,L.D.朗道、J.R.奥本海默等就根据星体平衡和稳定的理论预言可能存在稳定的致密中子星。尽管这种预言中的天体与当时已知的所有天体差别极大(异乎寻常的高密度等),可是在30多年后的1967年发现了脉冲星,预言终于被证实。另一方面,许多物理学概念首先是由研究天体现象得到的,后来又是依靠天体现象加以检验的。如首先是天体物理学家注意到充满宇宙间的电离物质具有一系列特性,这对建立等离子体物理学这门学科起了极大的推动作用。又如热核聚变概念是在研究恒星能源时首次提出的。禁线也是受到天体光谱研究的刺激才得到深入探讨的。由于地面条件的限制,某些物理规律的验证只有通过宇宙天体这个实验室才能进行。有关广义相对论的一系列关键性的观测检验,都是靠研究天体现象来完成的。水星近日点进动问题、光线偏转以及雷达回波的延迟是几个早期的例子。1978年,通过对脉冲星双星PSR1913+16的周期变短的分析,给引力波理论提供了第一个检验,这是理论物理学与天体现象二者结合的一个新的成功事例。因此,理论天体物理学既是理论物理学用于天体问题的一门应用学科,又是用天体现象探索基本物理规律的基础学科。无论从天文学角度来看,或是从物理学角度来看,理论天体物理学都是富有生命力的。1983年美国核物理学家W.A.福勒因研究宇宙化学元素形成机制取得重大成果和天体物理学家S.钱德拉塞卡因对恒星结构和演化理论作出的重大贡献而获得诺贝尔物理学奖;1993年R.A.赫尔斯和J.H.泰勒因发现射电脉冲双星共同获得诺贝尔物理学奖。他们经过近20年的努力,利用世界上最大的阿雷西沃射电望远镜进行上千次的观测,以无可争辩的观测事实,证实了引力波的存在。