磁流体发电

来自中文百科,文化平台
跳转至: 导航搜索

  磁流体发电汉语拼音:Ciliuti Fadian;英语:magnetohydrodynamic power generation),利用热等离子气体或液态金属等导电流体与磁场相互作用,把热能直接转换成电能的发电方式。

定义

  磁流体发电是一种新型的高效发电方式,其定义为当带有等离子状态,是指物质原子内的电子在高温下脱离原子核的吸引,使物质呈为正负带电粒子状态存在。

  磁流体的等离子体横切穿过磁场时,按电磁感应定律,等离子体的正负粒子在磁场的作用下分离,而聚集在与磁力线平等的两个面上,由于电荷的聚集,从而产生电势。在磁流体流经的通道上安装电极和外部负荷连接时,则可发电。

  为了使磁流体具有足够的电导率,需在高温和高速下,加上钾、铯等碱金属和加入微量碱金属的惰性气体(如氦、氩等)作为工质,以利用非平衡电离原理来提高电离度。前者直接利用燃烧气体穿过磁场的方式叫开环磁流体发电,后者通过换热器将工质加热后再穿过磁场的叫闭环磁流体发电。

发电技术

  燃煤磁流体发电技术--亦称为等离子体发电,就是磁流体发电的典型应用,燃烧煤而得到的2.6×106℃以上的高温等离子气体并以高速流过强磁场时,气体中的电子受磁力作用,沿着与磁力线垂直的方向流向电极,发出直流电,经直流逆变为交流送入交流电网。

  磁流体发电本身的效率仅20%左右,但由于其排烟温度很高,从磁流体排出的气体可送往一般锅炉继续燃烧成蒸汽,驱动汽轮机发电,组成高效的联合循环发电,总的热效率可达50%~60%,是目前正在开发中的高效发电技术中最高的。同样,它可有效地脱硫,有效地控制NOx的产生,也是一种低污染的煤气化联合循环发电技术。

发电流程

  在磁流体发电技术中,高温陶瓷不仅关系到在2000~3000K磁流体温度能否正常工作,且涉及通道的寿命,亦即燃煤磁流体发电系统能否正常工作的关键,目前高温陶瓷的耐受温度最高已可达到3090K。

  磁流体发电比一般的火力发电效率高得多,但在相当长一段时间内它的研制进展不快,其原因在于伴随它的优点而产生了一大堆技术难题。磁流体发电机中,运行的是温度在三、四千度的导电流体,它们是高温下电离的气体。为进行有效的电力生产,电离了的气体导电性能还不够,因此,还要在其中加入钾、铯等金属离子。但是,当这种含有金属离子的气流,高速通过强磁场中的发电通道,达到电极时,电极也随之遭到腐蚀。电极的迅速腐蚀是磁流体发电机面临的最大难题。另外,磁流体发电机需要一个强大的磁场,人们都认为,真正用于生产规模的发电机必须使用超导磁体来产生高强度的磁场,这当然也带来技术和设备上的难题。最近几年,科学家在导电流体的选用上有了新的进展,发明了用低熔点的金属(如钠、钾等)作导电流体,在液态金属中加进易挥发的流体(如甲苯、乙烷等)来推动液态金属的流动,巧妙地避开了工程技术上一些难题,制造电极的材料和燃料的研制方面也有了新进展。但想一下子省钱省力地解决磁流体发电中技术、材料等方面的所有难题是不现实的。随着新的导电流体的应用,技术难题逐步解决,磁流体发电的前景还是乐观的。在美国,磁流体发电机的容量已超过32000千瓦;日本德国波兰等许多国家都在研制碘流体发电机。我国也已研制出几台不同形式的磁流体发电机。